Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20198309

RESUMO

The Coronavirus Disease 2019 (COVID-19), caused by the novel SARS-CoV-2, continues to spread globally with significantly high morbidity and mortality rates. Immunological surrogate markers, in particular antigen-specific responses, are of unquestionable value for clinical management of patients with COVID-19. Here, we investigated the kinetics of IgM, IgG against the spike (S) and nucleoproteins (N) proteins and their neutralizing capabilities in hospitalized patients with RT-PCR confirmed COVID-19 infection. Our data show that SARS-CoV-2 specific IgG, IgM and neutralizing antibodies (nAbs) were readily detectable in almost all COVID-19 patients with various clinical presentations. Notably, anti-S and -N IgG, peaked 20-40 day after disease onset, and were still detectable for at least up to 70 days, with nAbs observed during the same time period. Moreover, nAbs titers were strongly correlated with IgG antibodies. Significantly higher levels of nAbs as well as anti-S1 and N IgG and IgM antibodies were found in patients with more severe clinical presentations, patients requiring admission to intensive care units (ICU) or those with fatal outcomes. Interestingly, lower levels of antibodies, particularly anti-N IgG and IgM in the first 15 days after symptoms onset, were found in survivors and those with mild clinical presentations. Collectively, these findings provide new insights into the characteristics and kinetics of antibody responses in COVID-19 patients with different disease severity.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20165704

RESUMO

One-step RT-qPCR is the most widely applied method for COVID-19 diagnostics. Designing in-house one-step RT-qPCR kits is restricted by the patent-rights for the production of enzymes and the lack of information about the components of the commercial kits. Here, we provide a simple, economical, and powerful one-step RT-qPCR kit based on patent-free, specifically-tailored versions of Moloney Murine Leukemia Virus Reverse Transcriptase and Thermus aquaticus DNA polymerase termed the R3T (Rapid Research Response Team) One-step RT-qPCR. Our kit was routinely able to reliably detect as low as 10 copies of the synthetic RNAs of the SARS-CoV-2. More importantly, our kit successfully detected COVID-19 in clinical samples of broad viral titers with similar reliability and selectivity as that of the Invitrogen SuperScript III Platinum One-step RT-qPCR and TaqPath 1-Step RT-qPCR kits. Overall, our kit has shown robust performance in both of laboratory settings and the Saudi Ministry of Health-approved testing facility.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20141945

RESUMO

Diagnosis and surveillance of emerging pathogens such as SARS-CoV-2 depend on nucleic acid isolation from clinical and environmental samples. Under normal circumstances, samples would be processed using commercial proprietary reagents in Biosafety 2 (BSL-2) or higher facilities. A pandemic at the scale of COVID-19 has caused a global shortage of proprietary reagents and BSL-2 laboratories to safely perform testing. Therefore, alternative solutions are urgently needed to address these challenges. We developed an open-source method called Magnetic-nanoparticle-Aided Viral RNA Isolation of Contagious Samples (MAVRICS) that is built upon reagents that are either readily available or can be synthesized in any molecular biology laboratory with basic equipment. Unlike conventional methods, MAVRICS works directly in samples inactivated in acid guanidinium thiocyanate-phenol-chloroform (e.g., TRIzol), thus allowing infectious samples to be handled safely without biocontainment facilities. Using 36 COVID-19 patient samples, 2 wastewater samples and 1 human pathogens control sample, we showed that MAVRICS rivals commercial kits in validated diagnostic tests of SARS-CoV-2, influenza viruses, and respiratory syncytial virus. MAVRICS is scalable and thus could become an enabling technology for widespread community testing and wastewater monitoring in the current and future pandemics.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20129247

RESUMO

Molecular testing and surveillance of the spread and mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are critical public health measures to combat the pandemic. There is an urgent need for methods that can rapidly detect and sequence SARS-CoV-2 simultaneously. Here we describe a method for multiplex isothermal amplification of the SARS-CoV-2 genome in 20 minutes. Based on this, we developed NIRVANA (Nanopore sequencing of Isothermal Rapid Viral Amplification for Near real-time Analysis) to detect viral sequences and monitor mutations in multiple regions of SARS-CoV-2 genome for up to 96 patients at a time. NIRVANA uses a newly developed algorithm for on-the-fly data analysis during Nanopore sequencing. The whole workflow can be completed in as short as 3.5 hours, and all reactions can be done in a simple heating block. NIRVANA provides a rapid field-deployable solution of SARS-CoV-2 detection and surveillance of pandemic strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...